Computer Invaders: The 25 Most Infamous PC Viruses of All Time

From the first amateur hackers in the 80s till 2011 when international cyber sabotage is a reality, viruses have illustrated the frightening potential of human ingenuity. Here’s a brief look back how computer viruses have evolved through the most important outbreaks of the last 25 years.

The first PC virus

1. Brain, 1986
More than a decade before anyone had ever heard of Napster, the first PC virus was designed to fight piracy. The author who came up with the word “cyber,” William Gibson called Brain “basically a wheel-clamp for PCs.”

Basit and Amjad Alvi created and marketed medical software in Lahore, Pakistan. They were interested in two things. First, they wanted to check the multi-tasking functionality in the new DOS operating system (so-called “TSR” systems). Secondly, they wanted to see if there are security vulnerabilities in DOS compared to other operating systems such as Unix.

When they realized that DOS was quite vulnerable, they had the idea to write a snippet of software that would monitor how the software and the floppy disks move around. Brain spread virally via 3 1/4-inch disks, and within weeks, the Alvi’s had to change their phone numbers.

25 years after the creation of first PC virus, in early 2011, F-Secure’s Mikko Hypponen went to Lahore, Pakistan to visit the address in the code. He found the Alvi brothers still there, running a successful business. The following video includes the first video interview Amjad and Farooq have given about Brain ever.

Some early fun

Most of the early viruses were variations of the same theme: “Gotcha!” Users knew they’d been infected because that was exactly the point. Like a digital pie in the face.

2. Stoned, 1987
Created by a high school student in New Zealand, Stoned was supposed to be harmless. It simply displayed the message “Your PC is now Stoned!” on your screen. However, as the first virus that infected a PC’s boot sector, Stoned established that viruses could control a computer’s function from the moment it turned on. Bob Dylan should be proud.

3. Form, 1990
Form became one of the most widespread viruses ever. On the 18th of each month, it produced a clicking sound from the PC’s speaker whenever a key was pressed. Annoying, but harmless.

Other variations on this early innocent sort of “gotcha” virus included V-Sign, which displayed a V on your screen. The Walker virus showed an elderly man walking across your screen. Elvira scrolled text in the “A long time ago, in a galaxy far, far away” style a la Star Wars. And then there was Joshi. Every year, on the Joshi’s birthday, this eponymous virus displayed a birthday message. The machine refused to boot up until the user typed “Happy Birthday Joshi.”

4. Michelangelo, 1992
Michelangelo would override everything on a hard drive on specified dates. A variation of Stoned with much crueler intentions, Michelangelo was probably the first computer virus that made international news.

5. VCL, 1992
Virus Creation Laboratory made it easy to whip up a malicious little program by automating virus creation using a simple graphical interface.

Getting Destructive

Early MS-DOS and PC-DOS viruses did some damage to PCs, usually intentionally, but virus writers soon began to actively seek to wreak havoc by actively disabling computers.

6. Happy99, 1999
Happy99 was the first email virus. It greeted you with “Happy New Year 1999” and emailed itself to all  contacts in your address book. Like the very first PC viruses, Happy99 did not cause any real damage, though it did spread to millions of PCs around the world.

7. Monkey, 1993
A distant relative of Stoned, Monkey secretly integrated itself into data files and spread seamlessly. It was the early ancestor of a rootkit, a self-concealing program, and it prevented booting from a floppy disk. When it was removed improperly, Monkey prevented any sort of booting at all.

Upgrading to Windows

In the early 90s, viruses became macro viruses and took on Microsoft’s new OS, Windows. Written in the same languages as applications like Microsoft Word, macro viruses appeared in late 1995. In just three months, they became the most common virus type in the world.

8. Concept, 1995
The first virus that infected Microsoft Word files, Concept became one of the most common viruses in the world because it could infect any OS that could run Word. Share the file, share the virus.

9. Melissa, 1999
Allegedly named after a female exotic dancer familiar to the virus writer, Melissa combined a virus and an email virus. It infected a Word file then emailed itself to all contacts in the user’s address book and became the first virus to span the globe in only hours. Melissa combined the jokey motivations of the early virus writers with the destructiveness of the era. This virus inserted comments from “The Simpsons” into users’ documents. Not so bad. But Melissa could also send out confidential information without the users’ notice. D’oh!

Not long after Melissa, Microsoft virtually eliminated macro viruses by changing how its Visual Basic macro language works within Office applications.

Crashing the network

Before firewalls, computer worms generated huge amounts of network traffic, disrupting systems by pure volume. These worms generally did not affect individual users but they could rock the infrastructure of both private businesses and governments.

10. Code Red, 2001
The first worm that spread without requiring any user interaction at all and thus spread around the world in minutes, Code Red hid from detection and carried out various functions on a cycle. On Days 1-19, it spread itself. From the 20th to the 27th, it launched Denial of Service attacks on various addresses including the White House. And from the 28th day till the end of the month, it rested.

10. Loveletter, 2000
The computer worm that broke millions of hearts, Loveletter is still one of the biggest outbreaks of all time. It spread via email attachment and overwrote many of the crucial files on the PCs it infected. This outbreak was an incredible successful attempt at social engineering. Using the promise of love, it convinced millions to open the attachment, causing an estimated $5.5 billion in damage worldwide. Guess there are a lot of people out there looking for a little love.

12. Slammer, 2003
Network worms require just a few lines of code and vulnerability to spark real world trouble. Slammer took down Bank of America’s ATM network and 911 services in Seattle. Even the air traffic control system was not immune.

13. Sobig, 2003
Sobig was a quick improvement on Fizzer (see below). Some versions waited for a couple of days after infecting a machine before turning affected machines into e-mail proxy servers. The result? Massive spam. AOL alone reported stopping more than 20 million infected messages on one day.

14. Mydoom, 2004
Mydoom spread over email and the Kazaa Peer-to-Peer (P2P) network. It set new records but was old school in the sense that the motive wasn’t monetary. Mydoom executed Distributed Denial-of-Service attack on one particular website and opened a backdoor on infected computers, which left the machine open to remote access.

15. Sasser, 2004
Sasser came in through a vulnerable network ports and slowed or crashed networks from Australia to Hong Kong to the UK.

Money. Money. Money.

In the last decade, the motive for virus writing has become obvious: Money. The technology still tends to be variations on a theme, but modern virus writers utilize advanced user psychology and social engineering to draw users into traps that they’d probably been warned about several times.

16. Fizzer, 2003
Fizzer was the first virus designed to make money. It arrived as an infected attachment. Once opened, it took over infected computers and forced them to send spam.

Ever-evolving threats

As the real-world impact of viruses was felt in the early 90s, business, government, software makers and the Internet security industry put fires out and collaborated to minimize threats. Virus writers, too, evolved to avoid detection, creating advanced malware that could even be programmed to be patient.

17. Cabir, 2003
The first mobile phone virus in history, Cabir targeted Nokia smartphones running the Symbian operating system. It was spread via Bluetooth and proved that whatever shape PCs evolve into, they will be targeted.

18. SDBot, 2003
SDBot was a Trojan horse that bypassed normal security to secretly control a computer. It created a backdoor that allowed the user to do several things including sniff for passwords and the reg codes of games like Half-Life and Need for Speed 2.

19. Haxdoor, 2005
Haxdoor was another Trojan horse that sniffed for passwords and other private data. Later variants had rootkit capabilities. Even Brain used techniques to cloak itself, but Haxdoor employed far more sophisticated methods. A modern rootkit can turn a computer into a zombie computer that can be controlled without the user’s knowledge, sometimes for years.

20. Sony BMI, 2005
In 2005, one of the biggest record companies in the world had the same idea that the Alvi brothers had in 1986: Use a virus to prevent piracy. On its audio CDs, it included a music player program and a rootkit that controlled how the owner could access the audio tracks. The result was a media firestorm and a class-action lawsuit that ended with Sony offering users money and free downloads.

Cyber Sabotage

Computer viruses have had real world effects for decades, but in 2010 a computer virus may have changed the course of history.

In November of 2010, Iranian President Mahmoud Ahmadinejad confirmed that a cyber attack had indeed caused problems with their nuclear centrifuges. And in January of 2011, Russia’s ambassador to NATO said that Stuxnet could cause a “new Chernobyl.”

21. Stuxnet, 2010
An unusually large Windows worm—about a 1000% larger than the typical computer worm, Stuxnet most likely spread through USB device. It infects a system, hides itself with a rootkit and sees if the infected computer is connected to a Siemens Simatic factory system. If the worm finds a connection, it then changes the commands sent from the Windows computer to the PLC Programmable Logic Controllers, i.e., the boxes that actually control the machinery. Once running on the PLC, it looks for a specific factory environment. If this is not found, it does nothing.

F-Secure Labs estimates that it would take more than 10 man-years of work to complete Stuxnet. This complexity and the fact that it could be used to impair the ability of a centrifuge to enrich uranium while providing no monetary gain suggest that Stuxnet was probably developed by a government—though which government is unclear.

22. Storm Worm, 2007
Machiavelli said it’s better to be feared than loved. Seven years after Loveletter, Storm Worm capitalized on our collective fear of bad weather and first spread generally via an email message with the subject line “230 dead as storm batters Europe.” Once the attachment was open, a Trojan backdoor and a rootkit forced the PC to join a botnet. Botnets are armies of zombie computers that can be used to, among other thing, send out tons of spam. And this one sucked in ten million computers.

23. Mebroot, 2008
Mebroot was a rootkit built to hide from the rootkit detectors that quickly became part of many Internet security suites. It is so advanced that if it crashes a PC, Mebroot will send a diagnostic report to the virus writer.

24. Conficker, 2008
Conficker quickly took millions of computers all over the globe. It exploits both flaws along with Windows and weak passwords along with several advanced techniques. Once a system is infected, further malware can be installed and the user is even prevented from visiting the website of most Internet security vendors. More than two years after it was first spotted, more computers are infected by the worm every day. F-Secure’s Chief Research Office Mikko Hypponen has said that in many ways Conficker is still “a great mystery.”

25. 3D Anti Terrorist
This trojanized “game” targets Windows Mobile phones and was spread via freeware sites. Once installed, it starts making calls to expensive numbers leaving you with large charges. This strategy of hijacking a mobile app or cloaking a malicious app is still new, but it’s likely to one of the main ways the virus writers will attack mobile devices.

Where are we 25 years after Brain?

In 2011, a PC running an updated version of Windows 7 is quite secure, especially when running updated security software. Now that we know more about viruses, we know how to fight them, and ideally prevent them. So, hopefully, in 25 years viruses will have gone the way of macro viruses and we won’t have to make a new list.

Cheers,

Sandra

More posts from this topic

Asian mother and daughter talking to family on digital tablet

Kids need better protection – An open letter to developers and decision makers

Tuesday February 9th is Safer Internet Day this year. An excellent time to sit down and reflect about what kind of Internet we offer to our kids. And what kind of electronic environment they will inherit from us. I have to be blunt here. Our children love their smartphones and the net. They have access to a lot of stuff that interest them. And it’s their new cool way to be in contact with each other. But the net is not designed for them and even younger children are getting connected smartphones. Technology does not support parents properly and they are often left with very poor visibility into what their kids are doing on-line. This manifests itself as a wide range of problems, from addiction to cyber bullying and grooming. The situation is not healthy! There are several factors that contribute to this huge problem: The future’s main connectivity devices, the handhelds, are not suitable for kids. Rudimentary features that help protect children are starting to appear, but the development is too slow. Social media turns a blind eye to children’s and parents’ needs. Most services only offer one single user experience for both children and adults, and do not recognize parent-child relationships. Legislation and controlling authorities are national while Internet is global. We will not achieve much without a globally harmonized framework that both device manufacturers and service providers adhere to. Let’s take a closer look at these three issues. Mobile devices based on iOS and Android have made significant security advances compared to our old-school desktop computers. The sandboxed app model, where applications only have limited permissions in the system, is good at keeping malware at bay. The downside is however that you can’t make traditional anti-malware products for these environments. These products used to carry an overall responsibility for what happens in the system and monitor activity at many levels. The new model helps fight malware, but there’s a wide range of other threats and unsuitable content that can’t be fought efficiently anymore. We at F-Secure have a lot of technology and knowledge that can keep devices safe. It’s frustrating that we can’t deploy that technology efficiently in the devices our kids love to use. We can make things like a safe browser that filters out unwanted content, but we can’t filter what the kids are accessing through other apps. And forcing the kids to use our safe browser exclusively requires tricky configuration. Device manufacturers should recognize the need for parental control at the mobile devices. They should provide functionality that enable us to enforce a managed and safe experience for the kids across all apps. Privacy is an issue of paramount importance in social media. Most platforms have implemented good tools enabling users to manage their privacy. This is great, but it has a downside just like the app model in mobile operating systems. Kids can sign up in social media and enjoy the same privacy protection as adults. Also against their parents. What we need is a special kind of child account that must be tied to one or more adult accounts. The adults would have some level of visibility into what the kid is doing. But full visibility is probably not the right way to implement this. Remember that children also have a certain right to privacy. A good start would be to show whom the kid is communicating with and how often. But without showing the message contents. That would already enable the parents to spot cyberbullying and grooming patterns in an early phase. But what if the kids sign up as adults with a false year of birth? There’s currently no reliable way to stop that without implementing strong identity checks for new users. And that is principally unfeasible. Device control could be the answer. If parents can lock the social media accounts used on the device, then they could at the same time ensure that the kid really is using a child account that is connected to the parents. The ideas presented here are all significant changes. The device manufacturers and social media companies may have limited motivation to drive them as they aren’t linked to their business models. It is therefore very important that there is an external, centralized driving force. The authorities. And that this force is globally harmonized. This is where it becomes really challenging. Many of the problems we face on Internet today are somehow related to the lack of global harmonization. This area is no exception. The tools we are left with today are pretty much talking to the kids, setting clear rules and threatening to take away the smartphone. Some of the problems can no doubt be solved this way. But there is still the risk that destructive on-line scenarios can develop for too long before the parents notice. So status quo is really not an acceptable state. I also really hope that parents don’t get scared and solve the problem by not buying the kids a smartphone at all. This is even worse than the apparent dangers posed by an uncontrolled net. The ability to use smart devices and social media will be a fundamental skill in the future society. They deserve to start practicing for that early. And mobile devices are also becoming tools that tie the group together. A kid without a smartphone is soon an outsider. So the no smartphone strategy is not really an alternative anymore. Yes, this is an epic issue. It’s clear that we can’t solve it overnight. But we must start working towards these goals ASAP. Mobile devices and Internet will be a cornerstone in tomorrow’s society. In our children’s society. We owe them a net that is better suited for the little ones. We will not achieve this during our kids’ childhood. But we must start working now to make this reality for our grandchildren.   Micke

February 8, 2016
BY 
Mikko Hypponen

Mikko Hypponen’s Malware Hall of Fame

Mikko Hypponen is one of the world’s most prominent cyber security experts. Described as a “virus hunter” in a Vanity Fair profile called “The Code Warrior”, Hypponen has spent nearly 25 years with F-Secure protecting people from computer viruses, worms, trojans, and other types of malware. In 2011, Hypponen travelled to Pakistan to meet the men behind the first known PC virus – Brain.A. [youtube https://www.youtube.com/watch?v=lnedOWfPKT0&w=560&h=315] The Brain virus was released in January of 1986, making January 2016 the 30th anniversary of this milestone in malware history. I thought it would be interesting to reach out to Mikko and ask him about other families of malware that standout as being noteworthy. So here’s Mikko’s list of some of the most infamous malware families (including viruses, worms, trojans, etc) that’ve pestered, frustrated, and even extorted computer users over the past few decades. 1990 Form – Form was a common computer virus identified in 1990, and for several years, was arguably the most prominent computer virus in the world. Spread through 3.5” floppy disks, it infected millions of computers throughout the world, and is possibly one of the most widespread viruses in history. 1992 Michelangelo – Michelangelo earns a place on the list for being the first truly global virus scare. It was named after the famous artist because the virus remained dormant until March 6 (the artist’s birthday), when it would awaken and overwrite sections of infected hard disks, thereby making the information inaccessible and the computer unusable. The virus was never particularly prominent compared to some of its contemporaries, but its destructive nature and subtlety helped spread Michelangelo Madness throughout the globe. 1995 Concept – Concept was the very first macro virus – a type of virus that infects applications such as Microsoft Word. It was a very prominent security concern in the mid-nineties, and even though it was successful in propagating itself organically during this time, it hasn’t been seen in over a decade. As the first macro virus, it was notable in that it spread by hiding itself as a Word doc and then infecting computers as those documents were shared. By using Word, it could use both Windows PCs and Macs to spread infections, as the software could run on both platforms. 1999 Melissa – Melissa, supposedly named after an exotic dancer, was a computer virus that sent infected Word documents to contacts in victims’ Outlook address book. While the virus was not designed to be particularly destructive, its rapid proliferation through the Internet wreaked considerable havoc on corporate servers and infrastructure. Some accounts claim that it infected twenty percent of computers globally, and the man eventually convicted of releasing the virus into the wild admitted to causing eighty million dollars in financial losses. 2000 Loveletter – Loveletter, also widely known as ILOVEYOU, was a prominent email worm that was able to spread itself throughout the globe in a matter of hours by promising victims a little bit of love. Disguising itself as a chain, love-themed email to recipients helped it quickly spread from its Filipino origin through Asia, Europe and North America. To this date, it is one of the largest malware outbreaks of all time, and responsible for an estimated 5.5 billion dollars of damage. 2001 Code Red – Code Red was the first fully-automated network worm for Windows. As in users would not have to interact with a machine in order to spread the infection. Code Red’s most infamous day was July 19th, 2001, when it successfully infected 300,000 servers. The worm was programmed to spread itself on certain days, and then execute distributed denial-of-service (DDoS) attacks on others, and was used against several different targets (including The White House). 2003 Slammer, Lovsan, and Sobig – Ok, so there’s three here and not just one. But they all occurred very close together, and unfortunately, all three were worms responsible for massive, global malware outbreaks. Slammer targeted servers so it’s presence wasn’t readily apparent to end users (save some lagging when they were attempting to access an infected server). Lovesan, however was able to infect end users running Windows ME or Windows XP, and use the infected machines in DDoS attacks. Sobig spread itself through email and network drives, and contained a trojan in order to cause more headaches for infected users. However, it appears that the trojan feature did not function as expected. These three worms infected millions of machines, and made headlines all over the world. 2004 Sasser – A computer worm that can be considered as the last large “hobbyist” outbreak. This is significant as it signaled the end of an era when most malware was written by people who were simply curious to see what the malware could do. Nowadays, malware has a more specific, insidious purpose, such as stealing information or making money. 2006 Warezov – A two-year email worm campaign perpetuated by professional criminals, Warezov gained notoriety for downloading new versions of itself from remote servers – sometimes as frequently as every 30 minutes, according to a 2006 interview with Mikko. 2007 Storm Worm (also called Small.dam) – Storm Worm was a trojan that was spread as an attachment to spam emails. But more importantly, it was a combination of complex and advanced virus techniques that criminals were able to use to make money by using infected machines as part of a botnet. 2013 Cryptolocker – A notorious ransomware family, Cryptolocker was spread through malicious email attachments, as well as the infamous Gameover Zeus botnet. Infected victims would find their hard drives suddenly encrypted, essentially locking them out of their devices and data until they paid a ransom to the perpetrators. While the FBI, in cooperation with other law enforcement agencies and security companies (including F-Secure), were able to disrupt the operation, the perpetrators were able to use Cryptolocker to extort about 3 million dollars from victims before being stopped. Other notable mentions include the 2005 Sony rootkit (for being distributed on Sony BMG CD-ROMs on their behalf), the still prominent Downadup worm from 2008 (for infecting millions, including armed forces of several countries and police departments), and the well-known Stuxnet virus from 2010 (for both its sophistication and its apparent state-sponsorship). If you want to know more about the history of computer viruses, you can check out Computer Invaders: The 25 Most Infamous PC Viruses of All Time!

January 29, 2016
BY 
Scam

Yes, it’s OK to play with scammers

This TED talk is so hilarious that I just have to share it with you. Watch it! British comedian James Veitch is engaging in the noble art of scam baiting, or scamming the scammers. The same as this site is dedicated to, or when I almost sold my boat to Mexico. I guess most or all of you already know how to spot an advance payment scam, aka. Nigerian scam. But James has some more to offer here. He’s making two important points, in addition to the excellent entertainment value. People often warns about engaging in any kind of conversation with these scammers. They are after all criminals and it’s safest to steer clear of them. I disagree, just like James. The people behind this kind of scams is not exactly the violent drug mafia. As a matter of fact, anyone who can use e-mail and Google Translate can set up a scam like this. And they are located in some poor remote country, typically in Africa. So it’s extremely unlikely that any of them would start hunting down people who play with them. That would disrupt their everyday business and cut profits, cost money and introduce the risk to get caught. But I do discourage people from engaging in scam baiting under their real identity. Set up a new mail account under a false name and never reveal any real contact info to them. You can reply from a different address than where you got the original spam. They are pumping out millions of spam messages and will not even notice the changed address. This adds an additional layer of security. And more important, it keeps your real inbox free of spam. Use their own tactic. Create a false identity with name, address, profession and country of residence. Stick to that story and make sure not a single bit of it is true. Read more about how to scam bait at 419eater.com. The other point is that scam baiting is a good deed. It keeps the scammers busy and ties up their resources. Resources that otherwise would have been used to scam a real victim and cause real damage. A single scam baiter can’t of course save the world, but they would probably shut down if all of us spent an hour a week scam baiting. And it can be fun so why not? A good scam baiter can be a real pain in the a** for the scammers. Be prepared to get some threats and evil language when they realize what is going on. Consider that as a trophy, a proof that you did it right. Don’t feel bad for them. They did after all contact you with the sole purpose to scam you for money.   Safe scam baiting, Micke   Image: Screenshot from ted.com  

January 28, 2016
BY